翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Magnetoresistive Random Access Memory : ウィキペディア英語版
Magnetoresistive random-access memory

Magnetoresistive random-access memory (MRAM) is a non-volatile random-access memory technology under development since the 1990s. Continued increases in density of existing memory technologies – notably flash RAM and DRAM – kept it in a niche role in the market, but its proponents believe that the advantages are so overwhelming that magnetoresistive RAM will eventually become dominant for all types of memory, becoming a universal memory.
==Description==

Unlike conventional RAM chip technologies, data in MRAM is not stored as electric charge or current flows, but by magnetic storage elements. The elements are formed from two ferromagnetic plates, each of which can hold a magnetization, separated by a thin insulating layer. One of the two plates is a permanent magnet set to a particular polarity; the other plate's magnetization can be changed to match that of an external field to store memory. This configuration is known as a spin valve and is the simplest structure for an MRAM bit. A memory device is built from a grid of such "cells".
The simplest method of reading is accomplished by measuring the electrical resistance of the cell. A particular cell is (typically) selected by powering an associated transistor that switches current from a supply line through the cell to ground. Due to the magnetic tunnel effect, the electrical resistance of the cell changes due to the orientation of the fields in the two plates. By measuring the resulting current, the resistance inside any particular cell can be determined, and from this the magnetization polarity of the writable plate. Typically if the two plates have the same polarity this is considered to mean "1", while if the two plates are of opposite polarity the resistance will be higher and this means "0".
Data is written to the cells using a variety of means. In the simplest "classic" design, each cell lies between a pair of write lines arranged at right angles to each other, parallel to the cell, one above and one below the cell. When current is passed through them, an induced magnetic field is created at the junction, which the writable plate picks up. This pattern of operation is similar to core memory, a system commonly used in the 1960s. This approach requires a fairly substantial current to generate the field, however, which makes it less interesting for low-power uses, one of MRAM's primary disadvantages. Additionally, as the device is scaled down in size, there comes a time when the induced field overlaps adjacent cells over a small area, leading to potential false writes. This problem, the half-select (or write disturb) problem, appears to set a fairly large minimum size for this type of cell. One experimental solution to this problem was to use circular domains written and read using the giant magnetoresistive effect, but it appears this line of research is no longer active.
A newer technique, spin transfer torque (STT) or ''spin transfer switching'', uses spin-aligned ("polarized") electrons to directly torque the domains. Specifically, if the electrons flowing into a layer have to change their spin, this will develop a torque that will be transferred to the nearby layer. This lowers the amount of current needed to write the cells, making it about the same as the read process. There are concerns that the "classic" type of MRAM cell will have difficulty at high densities due to the amount of current needed during writes, a problem that STT avoids. For this reason, the STT proponents expect the technique to be used for devices of 65 nm and smaller.〔("Renesas, Grandis to Collaborate on Development of 65 nm MRAM Employing Spin Torque Transfer" ), 1 December 2005〕 The downside is the need to maintain the spin coherence. Overall, the STT requires much less write current than conventional or toggle MRAM. Research in this field indicates that STT current can be reduced up to 50 times by using a new composite structure.〔(【引用サイトリンク】url=http://www.license.umn.edu/technologies/z09007_lower-switching-current-for-spin-torque-transfer-in-magnetic-storage-devices-such-as-magnetoresistive-random-access-memory-mram )〕 However, higher speed operation still requires higher current.〔Y. Huai, AAPPS Bulletin, December 2008, vol. 18, no. 6, p.33, "Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects."〕
Other potential arrangements include "Thermal Assisted Switching" (TAS-MRAM), which briefly heats up (reminiscent of phase-change memory) the magnetic tunnel junctions during the write process and keeps the MTJs stable at a colder temperature the rest of the time;〔(GSA Article.pdf )〕 and "vertical transport MRAM" (VMRAM), which uses current through a vertical column to change magnetic orientation, a geometric arrangement that reduces the write disturb problem and so can be used at higher density.
〔("How MRAM Works" )〕
A review paper provides the details of materials and challenges associated with MRAM in the perpendicular geometry. The authors describe a new term called "Pentalemma" - which represents a conflict in five different requirements such as write current, stability of the bits, readability, read/write speed and the process integration with CMOS. The selection of materials and the design of MRAM to fulfill those requirements are discussed.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Magnetoresistive random-access memory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.